Continuamos con este artículo tan descriptivo sobre estos objetos tan misterios de nuestro Universo, los agujeros negros. Recordemos el anterior artículo: Agujeros negros (I)

Si son negros, ¿por qué podemos verlos?

Esta es una buena pregunta. Y su respuesta es interesante debido a que, en realidad, no podemos verlos. Lo que los astrofísicos consiguen ver son los efectos que la descomunal gravedad de los agujeros negros tiene en su entorno. De hecho, lo que podemos ver en la fotografía que han hecho pública hace unas horas los responsables del Telescopio del Horizonte de Sucesos (EHT) es el disco de acrecimiento, que es una nube de materia atrapada en el campo gravitatorio del agujero negro que está muy caliente, y que, por esta razón, emite radiación.

Este material se va calentando y, poco a poco, una parte de él se va precipitando hacia el interior del agujero negro, que ocupa la porción central de la imagen, la que permanece completamente oscura. Afortunadamente, esta no es la única pista que permite a los científicos identificar dónde podría alojarse un agujero negro. Y es que su enorme tirón gravitacional puede tener un impacto muy claro sobre otros objetos de su entorno, como, por ejemplo, las estrellas y los planetas. Si los astrofísicos identifican un conjunto de estrellas y planetas orbitando en torno a un punto central claramente definido, y a priori en esa ubicación no hay nada, es probable que se trate de un agujero negro.

Qué forma tiene un agujero negro

La imagen que nos han ofrecido de ellos algunas películas, en las que parecen tener una estructura plana parecida a un umbral que es posible atravesar, es errónea. Posiblemente la que mejor los describe es ‘Interstellar’ debido a que Christopher Nolan, el director de esta película, fue asesorado por Kip S. Thorne, el brillante físico teórico estadounidense galardonado con el premio Nobel de Física en 2017 por su contribución al descubrimiento de las ondas gravitacionales.

A diferencia de lo que nos muestran algunas películas, los agujeros negros son objetos cósmicos esféricos

En realidad, los agujeros negros son objetos esféricos, y, como hemos visto, tienen un volumen perfectamente definido. De hecho, su límite queda fijado por el horizonte de sucesos, que es la región del espacio que envuelve al agujero negro más allá de la cual cualquier objeto que la atraviese caerá irremisiblemente hacia su interior sin posibilidad alguna de salvación.

Afortunadamente, la gravedad es una fuerza que decrece rápidamente con la distancia, por lo que es necesario acercarse mucho a un agujero negro para quedar atrapado en su campo gravitatorio. Pero esta es otra historia, una en la que indagaremos un poco más a continuación.

No es (demasiado) peligroso acercarse a un agujero negro

A pesar de lo que parece sugerir el nombre que les hemos dado, los agujeros negros son relativamente mansos. Su tirón gravitatorio es cada vez más fuerte a medida que nos acercamos a la singularidad, o, al menos, eso es lo que creen los científicos. La singularidad no es más que una región del espacio-tiempo alojada en su interior en la que no podemos definir el valor que tienen magnitudes físicas como la curvatura u otros conceptos geométricos. Es difícil imaginar algo así, pero podría ser una especie de limbo que no sigue las reglas del espacio-tiempo que conocemos.

La buena noticia es que a medida que nos alejamos de su horizonte de sucesos, el tirón gravitatorio del agujero negro pierde mucha intensidad. Tanto es así que incluso podríamos vivir en un planeta que orbita a cierta distancia alrededor de uno de ellos sin que ni el planeta ni nosotros fuésemos devorados por el agujero negro. De nuevo nos viene bien recurrir a la película ‘Interstellar’ (y probablemente no será la última vez que lo hagamos) debido a que en ella, precisamente, hay un planeta que orbita alrededor de Gargantua. Los protagonistas de la cinta llegan a descender a la superficie de ese planeta, y, en principio, y dejando a un lado los spoilers, no tienen mayor problema. Aunque se encuentran con un imprevisto: el tiempo.

Qué sucede con el tiempo en las proximidades de un agujero negro

Unos párrafos más arriba hemos descubierto que el tiempo y el espacio forman parte de un todo, lo que provoca que ambas magnitudes estén profundamente entretejidas. La intensidad de la gravedad en el interior de los agujeros negros es tan alta que el continuo espacio-tiempo se deforma, por lo que el tiempo no transcurre de la misma forma para un observador externo situado relativamente cerca del agujero negro, pero más allá del horizonte de sucesos, que para una persona próxima a esta última región.

La gravedad en las proximidades de los agujeros negros es tan intensa que el continuo espacio-tiempo se deforma

Echemos de nuevo un vistazo a ‘Interstellar’, pero aquí sí viene un spoiler, así que, si no has visto la película, quizá prefieras saltarte los dos próximos párrafos. El tiempo no transcurre a la misma velocidad para las personas que descienden a la superficie del planeta próximo a Gargantua que para el miembro de la tripulación que permanece en la nave y no llega a poner sus pies en el planeta.

Para las personas que descienden transcurren horas, mientras que para el miembro de la tripulación que se queda en la nave pasan varios años mientras espera el regreso de sus compañeros. Esto se debe a que la gravedad ejercida por la enorme masa del agujero negro deforma el continuo espacio-tiempo más a medida que te acercas más a él. Otro fenómeno que la película de Nolan ilustra correctamente.

Los agujeros negros no son eternos

Son poderosos, sí. Colosales incluso. Pero no son eternos. Stephen Hawking fue el primer físico que se dio cuenta de que los agujeros negros, si somos realmente rigurosos, no son completamente negros. Y no lo son porque emiten un poco de radiación, conocida, en honor a su descubridor, como «radiación de Hawking». Esta forma de radiación se produce en el horizonte de sucesos y tiene su origen en efectos cuánticos bastante complejos en los que no es necesario que profundicemos para no complicar más de la cuenta el artículo.

Los agujeros negros emiten radiación, conocida, en honor a su descubridor, como «radiación de Hawking», por lo que pierden masa y energía poco a poco

Lo realmente importante es que conocer la presencia de esta forma de radiación nos ayuda a intuir que, efectivamente, los agujeros negros pierden masa y energía con el transcurso del tiempo, por lo que llegará un momento en el que la perderán toda y se desvanecerán. O se evaporarán. Lo curioso es que el tiempo que es necesario esperar hasta que uno de ellos alcanza este punto es enorme. Tanto como la edad que tiene actualmente el Universo, por lo que los científicos creen que esto aún no le ha sucedido a ningún agujero negro cósmico.

Cómo veríamos a una persona que cae dentro de un agujero negro

No cabe duda de que sería toda una experiencia, sobre todo para la persona que tiene el valor de atravesar el horizonte de sucesos. El observador externo que mira hacia el agujero negro a una distancia prudencial del horizonte de sucesos vería que la persona que se precipita hacia él nunca acaba de entrar en su interior. Poco a poco iría quedando inmóvil hasta llegar a detenerse del todo en una región próxima al horizonte de sucesos.

No obstante, si siguiese observando aún más tiempo comprobaría que la persona atrapada en el agujero negro se desvanecería poco a poco hasta desaparecer del todo debido a que la luz que refleja iría perdiendo energía a causa de la gravedad extrema hasta que no pudiese ser detectada. Para el observador externo la víctima del agujero negro quedaría inmóvil y se desvanecería. Pero, ¿qué le pasa a la persona que se adentra más allá del horizonte de sucesos? Nada apetecible. Lo veremos a continuación.

Esto es lo que nos pasaría si entrásemos dentro de un agujero negro

Los científicos no tienen una certeza absoluta acerca de este suceso, pero las matemáticas y la física nos permiten predecirlo con cierta exactitud. Al principio no tendría por qué ser desagradable, al menos si no conociésemos el final al que estaríamos abocados. Caeríamos y caeríamos hasta rebasar el horizonte de sucesos, y poco a poco la gravedad iría aumentando hasta que la diferencia de intensidad entre la gravedad a la que están sometidos nuestros pies y nuestra cabeza fuese importante. Llegados a este punto nuestro cuerpo comenzaría a estirarse hasta desgarrarse completamente, por lo que llegaría nuestro final.

A medida que nos acercásemos a la singularidad el espacio-tiempo del interior del agujero negro comenzaría a colapsar sobre nosotros

Además, a medida que nos acercásemos a la singularidad el espacio-tiempo del interior del agujero negro comenzaría a colapsar sobre nosotros, estirándose y generando más espacio entre nosotros y el horizonte de sucesos. Ese espacio crecería a la velocidad de la luz, por lo que, por mucho que acelerásemos, seríamos incapaces de alcanzar la salida del agujero negro para escapar.

Por otro lado, la creación de nuevo tejido espacial sobre nosotros contribuiría a estirarnos aún más en un proceso al que los físicos llaman «espaguetificación». Es evidente de dónde sale este nombre. En realidad, acabaríamos siendo estirados en una dirección y comprimidos en otra hasta el punto de que los átomos de los que estamos hechos acabarían alineándose y perdiendo la coherencia que nos permite mantenernos con nuestra forma actual. No parece una experiencia demasiado apetecible, ¿verdad?

Más información | Xataka.com


0 comentarios

Deja una respuesta

Marcador de posición del avatar

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *